RO-R190 826

UNCLASSIFIED

CONPUTATIONAL SCIENCES(U) ATLANTA UNIV

an
NOV 87 ARD-23143. 2-MA-H DAARG29-83-G-0109

K B BOTA




% . 3 e Y, 55 f " AT SRR, Tev. ;
| Ao Lt Hete R e Y AT IR WM AL W .m\...m....v...»s.r.......r

Ve

D
N

16

|

14

= 1l




UNCLASSIFIED

TR TS ELTI S 4 I-T. W

MASTER COPY

FOR REPRODUCTION PURPOSES@ C

Fpon DOCUMENTATION PAGE
/

1b. RESTRICTIVE MARKINGS ‘l l |E F” E ' l 'F i

e 2a. SECURITY CLASSIFICATION AUTHORITY

Al Gd G L R (ol Solk Sod Suf Vet Syt

3. DISTRIBUTION/ AVAILABILITY OF REPORT

i AD-A190 826

* I"2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

e 4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ARD 23145.2-MA-H

6a. NAME OF PERFORMING ORGANIZATION

Atlanta University

6b. OFFICE SYMBOL
(if appiicable)

7a. NAME OF MONITORING ORGANIZATION

U. S. Army ies;arch Office

6c. ADDRESS (Gity, State, and ZiP Code)
Atlanta, Georgia 30314

7b. ADORESS (City, State, and 2/P Code)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
woerewapea. U. S. Army Research Office DAAG29-85-G-0109
’ " 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P. O. Box 12211 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
Research Triangle Park, NC 27709-2211 i

11. TITLE (Include Secunity Classification)
Computational Sciences

o e

12. PERSONAL AUTHOR(S)
Kofi B. Bota

i -
[ adgstag 132 TYPE QF REPORT
Final
16. SUPPLEMENTARY NOTATION

D e

17. COSATI CODES

of Ehe authgr(s) .and shiuld not be const

FIELD GROUP SUB-GROUP

i

13b. TIME COVERED
FROM 7/1/85 to 9/306/8

14. DATE OF REPORT

E OF REPOR] iYe§r7Month Day) rs. PAGE CQUNT

% The view, opinions and/or findings contained in this report are those
d as, an fficig}:l';?ggrtment of the Army position,

18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
Computational Sciences, Stochastic Differential
Equatlons , leferentlal Equations, Integral

Fau

course of the research.

r em

' ‘9 ABSTRACT (Continue on reverse if necessary and identify by block number)

>~The research results are contained in the eleven papers published during the
Abstracts of these papers are contained)in t—he—f‘mai"repc-re-—{

'
Fris Aocyment .

7 =a_ 2t fﬂ-&fﬁ)

DTIC

gELECTEB

20. DISTRIBUTION / AVAILABIUTY OF ABSTRACT

QO uncLassiFiepANUMITED ] SAME AS RPT.

Qonc USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (inciude Ares Code) | 22¢. OFFICE SYMBOL

JO FORM 1473, sa maR

i

AL L PO AN

= h
" \."\'r\' e

83 APR edition may be used until exhausted.
All ather editions are obsolete.

ot

FEB O 21988
SECURITY CLASSIFICATION OF THIS PAGE

‘!-—Q"I

UNCLASSIFIED



Aro & U4SA-Ma

FINAL REPORT

ARO PROPOSAL NUMBER: 23145-MA-H
PERIOD COVERED BY REPORT: July 1, 1985 - September 30, 1987
TITLE OF PROPOSAL: Computational Sciences

CONTRACT OR GRANT NUMBER: DAAG29-85-G-0109

NAME OF INSTITUTION: Atlanta University

Q
\
AUTHOR OF REPORT: Kofi B. Bota > Co"ﬁ"bl/‘

LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER AR07$P0NSO§SHIP DURING
GRANT PERIOD, INCLUDING JOURNAL %FFERENCES:

G.S. Ladde, and M. Sambandham, 'ﬁ;ﬁerical Solutions to Stochastic
Difference Equations',*“to appear in VII International Conference Volume
on Trends in Nonlinear sis and Application (ed. V. Lakshmikantham) .

M. Sambandham, and N. Medhin,sﬁApproximate Solution of Random Differential
Equations;* to appear in Conference Volume of the International
Conference 7 2 ja] Equations, University of Alabama, Birmingham,
AL.

N. Medhin, M. Sambandham, and C. K. Zo1tan1,9“Numer1ca1 Solution to a
System of Random Volterra Integral Equations,™ to appear in the IVth Army

Research Conference Volume in Applied Mathemdtics, pp 123-142.
N. Medh1n}““0pt1ma1 Processes Governed by Integral Equations with Uni- narteTeD

lateral Constraints"~to appear in .Journal of Mathematical Analysis and
Applications, Vol. 128, 1988.

M. Sambandham, V. Thangaraj, and K.B. Bota; "Numerical Solution of Randomion Por
Love’s Integral Equation;"?ﬁbmitted to the Journal of Mathematical ~RAEL
Analysis and Applications. ‘B

a
N. Medhin, and M. Sambandham{C"M1xed Min-Max Optimization Problem with Aﬂ:iion
Restrictions,™ to appear in Applied Mathematics and Computation. :

|
N. Medhin,f:ﬁ Mixed Min-Max Control Problem Governed by Integral -
Equations;™to appear in Journal of Mathematics and Computer oution/

Application. Availebility Cedes
E T T\Avell and/or
” [ i

N )

‘x¢\\Jngvv?uy-jyv?p?wvv?yvpyvnmvuwu‘



VW ¥ O A

B N BE g o oY

«

AN A &
&

« U V. N o

/

M. Sambandham, and N. Medhin, "Approximate Solution of Random Differential
Equation," to appear in Lecture Notes in Mathematics, Springer-Verlag
(ed. Knowles and Saito).

N. Medhin, M. Sambandham, and C. K. Zoltani, "Numerical Solution to a
System of Random Volterra Integral Equations I: Successive Approximation
Method, "™ submitted to International Journal of Mathematics and Computer
Application.

M. Sambandham, T. S. Srivatsan, and K.B. Bota, "A Method for the Numerical
Solution of Random Cauchy Singular Integral Equation," to appear in the
International Journal of Mathematics and Computer Applications.

M. Sambandham, and K.B. Bota, "Approximation to Autoregresive Model with
Stochastic Coefficients,? Third SIAM Conference on Discrete Mathematics,
May 14-16, p. A25, Clemson University.

SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING
THIS REPORTING PERIOD:

K.B. Bota, R. Mickens, M. Sambandham, and N. Medhin

Degrees Awarded: 2 - M.S. in Mathematics

........

D R R A R O NI N AR NI

T

" ',?{‘i‘}’l’(’l-:‘-’ﬁ 2

X FWY e e
S

L -

Call o} S8

e,y —l.' .1 l,}x, rﬁ ‘s‘ ‘-,‘),ﬁ )“l }) ’p‘ ‘_'.\ (\.":":".r.‘(I l'v.r v ‘: C&' c_.; “.



. cam i an v ag .
W € W Ny -

5
) '
h
e
e
L..l
3
:: TOKEN PERFORMANCE AND LOCAL AREA NETWORKS
"!
)
’
>,
"l
o by
¥
~
. P. Jackson
- Department of Economics
1. Atlanta University
e, Atlanta, GA 30314
o
o,
"’ %
! N. Medhin
.j Department of Mathematics and Computer Sciences
K Atlanta University
ks Atlanta, GA 30314
T
<.
"',
Lo
# -'p-
- % '
M. Sambandham {
Department of Mathematics and Computer Sciences
- Atlanta University/Morehouse College ]
:j Atlanta, GA 30314
&
Z;: ]
1
<
N
o -
" * Supported by U, S. Army Research Contract No. DAAG29-85-G-0109 f
[
L/ ;
\ ’
) ;
| o
K
!
B o B N I R S S A A S




X

o

’A -

o

2 NUMERICAL SOLUTION OF A SYSTEM OF RANDOM VOLTERRA INTEGRAL

,, EQUATIONS I: SUCCESSIVE APPROXIMATION METHOD*

7

v N. MEDHIN

o Department of Mathematics and Computer Science

. Atlanta University

> Atlanta, GA 30314

I'd 4
>, M. SAMBANDHAM

BN Center for Computational Sciences

’ Atlanta University and

ot Department of Mathematics .
’ Morehouse College »
L- Atlanta, GA 30314

[Ny

y Abstract

e In this article we discuss successive approximation )
N d
;- method for a system of random Volterra integral equations. '
f An example is presented to implement the theory. Kolmogorov-

Gﬂ Smirnov test is used to fit a distribution of the solutions.

o

3 1. Introduction

P The study of random Volterra integral equations and

-

- their applications play an important role in the area of

% ]
b; probabilistic analysis. One c¢f the main reasons is that

o)

i integral equations are suitable for numerical treatment. \
- For a recent survey of approximate solution of random inte-

' v
N gral equations we refer to Bharucha-Reid and Christensen !
<, (4] . For the numerical treatment of random integral equa- !
<, (]
> . . !
. tions we refer to Bharucha-Reid [3], Becus (2], Christensen

: and Bharucha-Reid [S], Lax (8-10], Tsokes and Padgett (14].

7 For a detailed survey of analytical and numerical methods

~ ———————s

*Supported by U.S. Army Research Contract no. DAAG29-85-G-0109.
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To appear in Conference Volume of the International Conference in Differential,

Equations, University of Alabama, Birmingham, AL.

APPROXIMATE SOLUTION OF RANDOM

DIFFERENTIAL EQUATION*

M. Sambandham
Department of Mathematics
Morehouse College/Atlanta University
Atlanta, GA 30314

and

Negash Medhin
Department of Mathematics and Computer Science
Atlanta University
Atlanta, GA 30314

Abstract

Chebyshev method for solving random differential equa-
tion is presented. The convergence of the random coefficients
of the Chebyshev series is established. Statistical pro-
perties of the random coefficients are discussed.

1. INTRODUCTION

In recent years, increasing interest in the numerical
solution of random differential equations has led to the pro-
gressive development of several numerical methods. A large
number of papers have appeared in the literature containing
approximate solutions of random differential equations. For
Newton's method, successive approximations, perturbation
methods, method of moments, finite element methods and other
methods on the approximate solutiom of random equations we
refer to Bharucha-Reid {l1]. Numerical methods of random poly-
nomials can be found in Bharucha-Reid and Sambandham (2].
For a short and elegant note on several of these methods we
also refer to Lax (9, 10]. Some analytical and numerical
estimates on error estimates of stochastic differential
equations are presented in Ladde et al. (6-8). For other
interesting numerical techniques we refer to Boyce (3] and
(11). Numerical treatment of Ito equations can be found in
Klauder and Petersen [4], Rumelin [12] and Taley [15]). We
notice that most of these numerical methods are successful

*Research supported by U.S. Army Research Office, Grant No. é;
I-‘N

DAAG 29-85-G-0109.
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*A Mixed Min-Max Control Problem
Governed by Integral Equations

Negash G. Medhin

Department of Mathematics and Computer Science
Atlanta University
Atlanta, GA 30314

A mixed min-max control problem is considered using
relaxed controls. Mixed min-max problems governed by dif-
ferential equations have been considered using Dubovitskii
and Milyutin Theory and Convex Analysis [6]. Here we use
relaxed controls and penalizapion to deal with a process
governed by integral equations. We use a technique employed
by us in dealing with control problems governed by integral

equations [2].

*Research supported by U.S. Army Research Office

DAAG29-85-G-0109
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NUMERICAL SOLUTIONS TO STOCHASTIC DIFFERENCE EQUATIONS*

G. S. Ladde M. Sambandham
Department of Mathematics Center for Computational Sciences
University of Texas at Arlingtom Atlanta University and
Arlington, TX Department of Mathematics
Morehouse College
Atlanta, GA

ABSTRACT

Statistical properties of the numerical solutions of random difference
equations are estimated. By an application of variation of constant
formula, error estimates between random solutions and smooth solutilons
(deterministic solution) are discussed.

1. INTRODUCTION

Numerical solutions of mathematical models of dynamical systems in applied
mathematics demand a fair knowledge of stochastic difference equations.
That is stochastic difference equations where some of the variables can
change stochastically in time. More recently Ladde and Sambandham (5]
developed several random difference inequalities which are very powerful
tools to study stability properties of stochastic difference equations.

By an application of variation of constant formula, error estimates
between stochastic systems and the respective deterministic (smooth) sys-
tems are discussed in [6]. These estimates provide statistical properties
of the upper bound for the error estimates. For related results we refer
to Fai Ma and Caughey {2,3,4], Mann and Wald (7], Deller (1].

We organize our article as follows. In Section 2 we present the
analytical upper bounds for error estimates. In Section 3 we include a
few discussions on the numerical solutions. In addition, we have pre-
sented a few tables and figures to illustrate the behavior of the error

between the mean of the random solutions and deterministic solutions. We

*Research supported by U.S. Army Research Office Grant Numbers
DAAG 29-85-G-0109 and DAAG 29-84-G-0060.

L PR AP L P S =" " *"a
W te Lt N

"-".V;“

5 N

~ya
£ 8 »
»

O O

;x

2 a
.
A
e
1 _a

RN
'

kg )
S

[ Jrl
v
L

’
R
w2 0

A

R LS
o e

v
s

A
NN

b)

sl 4

AT A,

«
A

-
Y
»

I3

- {.n‘-‘h;"‘-}'i':l‘i w»

.A‘l'i
SBNNN



'/"-‘.'f‘_'l’:d'-' N

(R g

--------

NUMERICAL SOLUTION TO A SYSTEM OF
RANDOM VOLTERRA INTEGRAL EQUATIONS*

1 2

N. Medhin™, M, Sambandham® and C. K. ZOItani3

Abstract

In this article we present a brief sum-
mary of the numerical solution of a system
of random Volterra integral equations. The
methods we use are (i) Newton's method and
(ii) successive approximation method. Based
on the simulation, we discuss the mean and
variance of the solution of a system of random
Volterra integral equations.

*Supported by U.S. Army Research Contract No. DAAG29-85-G-0109.

lDepartment of Mathematics and Computer Science, Atlanta

University, Atlanta, GA 30314.
2Center for Computational Sciences, Atlanta University,
Atlanta, GA 30314; Department of Mathematics, Morehouse
College, Atlanta, GA 30314,
3Ignition and Combustion Branch, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland 21005.
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Optimal Processes Governed by Integral Equations :}

]

with Unilateral Constraint 0

I~

(7 5
I ¢
‘ Negash G. Medhin* »
An optimal process with unilateral constraint is con- :ﬂ
sidered using relaxed controls. Existence of optimal é‘
control is automatic. Further, problems with linear and 7
N

certain quadratic cost functions with linear integral and t:
l_'
state constraints are such that the controls are actually ::f
b

ordinary, i.e., bounded measurable functions. In addition,

1

ot e
WL
. »'e

if the control set is a convex polyhedron the optimal con-
trols take their values in the vertices of the polyhedron.

Control processes governed by integral equations have been

5,
.

"¢
considered in [2]. However, in [2] existence is not shown 3-
b,
for the general problem and optimality conditions are not ;.
]
available for the problem when state constraints are pre- ;i

P

sent. Furthermore, the work in [2) has some errors as

.‘{

pointed out in [3]. Finally we point out the basic idea in

-

our approach in this paper-is the same as in [6].

*Associate Professor of Mathematics, Atlanta University, )

Atlanta, GA 30314. Research supported by U.S. Army Research .5
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! *A Mixed Min-Max Control Problem -

| Governed by Integral Equations -

| A
' Negash G. Medhin ]

i Department of Mathematics and Computer Science ﬁJ

f Atlanta University b

) Atlanta, GA 30314 a1

A mixed min-max control problem is considered using

relaxed controls. Mixed min-max problems governed by dif- E}
ferential equations have been considered using Dubovitskii y
and Milyutin Theory and Convex Analysis [6]. Here we use
relaxed controls and penalization to deal with a process

governed by integral equations. We use a technique employed

p by us in dealing with control problems governed by integral

equations (2].
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Mixed Min-Max Optimization Problem with Restrictions *

Negash G. Medhin M. Sambandham

Department of Mathematics Department of Mathematics
and Computer Science and Computer Science

Atlanta University Atlanta University and

Atlanta, GA 30314 Morehouse College

Atlanta, GA 30314

Introduction

We consider a min-max optimization problem using relaxed

L ;«5;.;, “5?'.?& ‘,\-“

controls. Such problems have been considered using

Dubovitskii and Milyutin Theory and convex analysis [5].

We reformulate the problem where a unilateral constraint is

WUSEUNS

added. We deal with the reformulated problem using penali-

X

zation (2], [3]. Our procedure produces more optimality

R
L
[

:
v

conditions than [S5] and also more insight into [§]. 1In the

special case where the controls appear linearly and the con-

’, c" ':'\4'\"

trol sets are convex polyhedra the relaxed controls are

::I

L4

N

ordinary controls taking values in the vertices of the i’
s
polyhedra. Finally, we present examples where we demonstrate E:
l".‘

)

how the optimal controls and trajectories could be calculated

and some that are numerically worked out. Py

LW RN
s

[

Ay

F )

KEY WORDS: Relaxed controls, unilateral constraint,
penalization
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! NUMERICAL SOLUTION TO A SYSTEM OF
RANDOM VOLTERRA INTEGRAL EQUATIONS*

'f{'.'(i".‘ Bl R S

2

3

N. Medhinl, M. Sambandham® and C. K. Zoltani

Abstract

In this article we present a brief sum-
mary of the numerical solution of a system
b of random Volterra integral equations. The
! methods we use are (i) Newton's method and
r (ii) successive approximation method. Based
on the simulation, we discuss the mean and
variance of the solution of a system of random
Volterra integral equations.
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APPROXIMATE SOLUTION OF RANDOM 3

v

CIFFERENTIAL EQUATION®

s
l’ »

b

M. Sambandham B
Department of Mathematics i

Morehouse College/Atlanta University

Atlanta, GA 30314 .
o0

and :,

A

Negash Medhin hﬂ

Department of Mathematics and Computer Science ’

Atlanta University 7y
Atlanta, GA 30314

b
Abstract S»
Chebyshev method for solving random differential equa- N
tion is presented. The convergence of the random coefficients ?“
of the Chebyshev series is established. Statistical pro- i
perties of the random coefficients are discussed. -
f.~';
1. INTRODUCTION !‘
S
In recent years, increasing interest in the numerical N
solution of random differential equations has led to the pro- :}
gressive development of several numerical methods. A large RS
number of papers have appeared in the literature containing
approximate solutions of random differential equations. For 0
Newton's method, successive approximations, perturbation N
methods, method of moments, finite element methods and other QL?
methods on the approximate solution of random equations we }:
refer to Bharucha-Reid (l]. Numerical methods of random poly- e
nomials can be found in Bharucha-Reid and Sambandham [2]. i
For a short and elegant note on several of these methods we Ny
also refer to Lax (9, 10). Some analytical and numerical e,
estimates on error estimates of stochastic differential v
equations are presented in Ladde et al. [6-8). For other : -
interesting numerical techniques we refer to Boyce (3] and i f
{11]. Numerical treatment of Ito equations can be found in ' )

Klauder and Petersen (4], Rumelin [12] and Taley [15]). We
notice that most of these numerical methods are successful

*Research supported by U.S. Army Research Office, Grant No.
DAAG 29-85-G-0109.
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A METHOD FOR THE NUMERICAL SOLUTION OF

RANDOM CAUCHY SINGULAR INTEGRAL EQUATION

M. Sambandham T. S. Srivatsan
Department of Mathematics Georgia Institute of
Atlanta University and Technology
Morehouse College Atlanta, GA 30332
Atlanta, GA 30314
and
K. B. Bota

Department of Physics

Atlanta University

Atlanta, GA 30314

ABSTRACT
The solution of several elasticity problems, and parti-

cularly crack problems, can be reduced to the solution of
one-dimensional singular integral equations with a Cauchy-
type kernel. In this paper, we present a method for the
numerical solution of a random singular integral egquation
of the Cauchy-type. To illustrate this method, it is applied
to the random singular integral equation that arises in the
problem of periodic array of straight cracks inside an
infinite isotropic elastic medium and subjected to random
pressure distribution along the crack edges. The statistical
properties of the random solution are evaluated numerically,
and used to determine the stress intensity factor at the
crack tips. Results of this study highlight the advantage of
using this method to solve a random Cauchy-type singular
*Research supported by U.S. Army Research Office under Grant

numbers DAAG 29-85-G-0109 and National Science Foundation
Grant number PRM-8215949.
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integral equation. The method is applied to the crack problem

subjected to different forcing functions.

1. INTRODUCTION

In recent years, an unprecedented widespread interest
in the numerical solution of singular integral eguations of
the Cauchy-type has resulted in the development of several
numerical methods [l1-5] besides stimulating a mathematical
interest in their numerical analysis. Since the pioneering
work by Erdogan {1} in 1969 and subsequently by Erdogan and
co-workers [3], a large number of papers have appeared in the
literature concerning singular integral equations that arise
in several fields of mathematical physics and engineering.

The solution methods developed have aimed at reducing the
singular integral equation to a system of linear algebraic
equations which can be easily solved to give an approximate
expression for the solution of a singular integral equation or
solutions in the case of a system of singular integral equa-
tions.

Several of the numerical methods developed over the years
were found to have disadvantages due to their inherent com-
plexity, low degree of accuracy and limitations as regards the
classes of singular integral equations to which they were
applicable. It is known that numerical solutions of Fredholm
integral equations by reduction to a system of linear equations

could be extended to the case of Cauchy singular integral
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A equations (CSIEs), that is to the case when the kernels of

q' the Fredholm integral equations have Cauchy-type singularities.
ag Since Cauchy-type singular integral equations on closed con-
ﬂﬁ tours have been treated elsewhere (7, 8], in this paper we

{y confine our attention to equations on intervals (a,b) of the

-~

EE real line, which may be either finite or infinite. 1In parti-
jﬁ cular, we consider linear equations since the theory for these
:& is fairly complete and well developed. The most frequently

ié used technique for the numerical solution of linear singular
Q& integral equations consists in approximating the integral

;g terms by using an approximate numerical integration rule

f; and applying the singular integral equation at appropriately
:ﬁ selected collocation points [2-4, 9]. One determination of

:i the unknown function at the abscissas used, the function is

:§ approximated along the whole integration interval (10 ],

vo A wide body of literature pertaining to the numerical

o solution of singular integral equations of the deterministic

E: type is succintly summarized by Ergodan, et al. [3], Golberg

i (11], and Theocaris [6]. In referring to singular integral

‘? equations, Erdogan, Golberg and Theocaris in their articles

imply Cauchy-type singular integrals and Cauchy-type singular

O]

PR A )
e

PP

l.'

integral equations. We refer to Bharucha-Reid and Bharucha-

L«

Reid and Christensen [12, 13] for surveys of the different

]
c"'l'
«a's % 8

analytical methods for the solution of random integral equa-

tions. Most recently, Christensen and Bharucha-Reid [l4]

developed numerical solution procedures for Fredholm equations
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-
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with random kernels, random right hand side or both and for
Fredholm equations with random degenerate kernels {15]. The
Cauchy-type singular integral equations which arise fre-
quently in the fields of aerodynamics, hydrodynamics, solid
mechanics, elasticity and fracture mechanics, are closely
related to Fredholm-type equations. There exists a pragmatic
need to develop numerical techniques in order to be able to
study the characteristics of the random singular integral
equations. The rationale for this study was to extend the
concept for the solution of random Fredholm integral equations
[14-16], to the solution of random singular integral equations
of the Cauchy-type that arise in crack problems in the
classical theory of elasticity. In particular, we consider
the problem of an array of periodic cracks inside an infinite
isotropic elastic medium and subjected to random pressure
distribution along the crack edges, i.e., the case of a

random forcing function. The statistical properties of the
solution are evaluated and the results obtained for the random
equation are compared with those of the deterministic equa-
tion. Further we also discuss the distribution of the stress

intensity factor for different sample sizes.

2. SINGULAR INTEGRAL EQUATIONS

Consider the singular integral equation of the form

1 1 s(t) 1
(2.1) = Iz dt + [ k(x,t)s(t)dt = £(x), -1 < x <1,
' -1

........
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where k(x,t) is a regular Kernel. ¢(t) is the unknown func-

tion proportional to the crack tip opening displacement and
f(x) 1s the known function representing pressure distribu-

tion along the crack.

Let g(t) = ¢(t)/z(t), where z(t) = (1-t2)'1/2 and
1
(2.2) S o¢(t)dt = 0.
-1

We consider (2.1) together with (2.2) and replace g(t) by a
new unknown function G(x) defined by the first integral of
(2.1), that is,

1

(2.3) 60 =1 5 -T2 EE g 1< <1
¥ -l -X

Since g(t) satisfies (2.2), we can express g(t) in terms of
G(x) by

1
(2.4)  q(t) = = (1-y2) /2 %i¥% dy, -1 <t < 1.

-1

By an application of (2.3) and (2.4), we can write (2.1l) in

the form
1 2.1/2
(2.5) G(x) + [ (l-y”)7." Kly,x)G(y)dy = f(x) -1 < x <1,
-1

where

1 1t 2.-1/2 K(t,x)
(2.6) K(y,x) = = J (1-t7) T_’_ dt

A —l —y
We remark that (2.5) is another form of (2.1). The equation

(2.5) is Fredholm equation of second type and its numerical

solution can be found by gquadrature method.
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The probabilistic analogue of (2.5) is the random egua-
tion. We call an equation random if certain components such
as coefficients, kernels, nonhomogeneous terms or forcing
functions and initial and or boundary data are random func-
tions. The random version of (2.5) is of the form

1

(2.7) G(x,w) + [ (l-y
-1

2)1/2

K(YIXIW)G(X:W)dY = f(xlu)
-1 < x <1
where K(y,xX,w) is the random kernel and f(x,w) is the random

forcing term. The parameter w is an element of a given

PP o8 vl g% 5 J 3

probability space (2,A,P). Here G(x,w) 1s the random func-

tion referred to as the solution or output. For numerical

AT il S

solution of (2.7) we refer to [14, 15, 16].

7

In this article we consider a periodic array of cracks
along a straight line in an infinite isotropic elastic medium

under plane strain or generalized plane stress. The length

W e v 7.9

of each crack is assumed to be '2a' and the period of the
array is 'b'. For tre case of a constant compressive loading
distribution along the crack edges, Iocakimidis [17] found the
singular integral equation to be

1

7 (l-tz)—
-1

1/2 “a(t-x)

a cot (—g—)g(t)dt = f(x)

(2.8)
which is of the form (2.1) with
—a{t=-x) 1

(2.9) kit,x) = g cot{—g—) = ={g=xy -

where cracks are assumed to be loaded by constant compressive




. “
loading distribution £(x) along both crack edges. 1If the o
loading distribution f(x) is random, then (2.8) is a random ;:

o

singular integral equation. If we denote random loading f
LY
distribution by f(x,w) then the random version of (2.8) is ?i
1 -

(2.10) 2 5 (1-e3) TV 200e (TAEX ) g (p, )at = E(xw) L < x < 1 o
-1 N

Equation (2.10) together with (2.2) can be solved numerically ;'
by methods suggested in [12-17]. Eﬁ
3. NUMERICAL TREATMENT ::;
In this section we discuss the numerical solution of "\

~

(2.10). We assume the ratio a/b = .4 and the successive ﬁ
o~
cracks lie close to each other. We denote the value of the ﬁ:
stress intensity factor by K(:l,w) at the crack tips t = :1. %;
It is given by 3‘
>

(3.1) K(z1l,w) = *g(z1l,w) l
:::
N o)
= % z 1 :xk)G(xk.u), }f

k:l -

K

where x, are suitable nodes i
X, = cos(k-0.5) — WV
k s : N N
which we use to solve (2.7). The unknown random function l.
-

g(x,w) in (2.10) is evaluated at different pressure distri- ji
i

butions along the crack edges, namely, ﬁ}
!
Example 3.1. f(x,0) ¢ N(1,0°) o
oL

o~

l.\

o

L

_"s.
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Example 3.2. f(x,.) « N(e",5") b
-

Example 3.3. f(x,w) =« N(ex,czezx) E
Ky

o
A sample of 5000 standard normal random numbers are §'
generated from IMSL routines (GGNML). The resulting random 3
&,

numbers are used to generate the random input functions, o
)

3 1} . . .-‘

namely, the random pressure distributions in the manner iy
. . . . )

described above. For each random input function, equation

v

%

(2.7) and hence equation (2.10) is solved numerically to g
t

. . . . V
obtain the random output function, and the stress intensity NY
factor. At the crack tips, K(:tl,w) are computed based on the E
o,

relationship in equation (3.1). g'
4
0y

4. RESULTS AND DISCUSSION i
Accurate estimates of the stress intensity factor at the :;.
crack tips under more realistic pressure distributions is &
-

\-

essential for the reliable prediction of fatigue crack growth i
A

.\-

rates in structural members. Several analytical techniques f
Y
are presently available to obtain solutions to random :ﬁ
Cauchy-type singular integral equations that arise in crack i
problems. Most of these numerical techniques for obtaining :'
the stress intensity factors for crack and elasticity prob- r
™~

a4

lems have been concerned with pressure distributions that are L
K

purely deterministic in nature. b
In dealing with random equations, the main objectives §

L

)

to be concerned with are: (1) determination of the statisti- )
]

L)

. . . . W

cal properties of the random solution such as its expectation, w
l‘
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variance and higher moments; (2) to establish the relation-

ship between the expected solution of the random equation
and the solution of the deterministic equation or the mean
solution [18]; (3) determining the distribution of the solu-
tions, and (4) discussing the limiting properties of the
solutions. Of particular interest is the relationship
between the statistical properties of the solution and the
statistical properties of the random input function intro-
duced into the equation. Table I-V summarize the statisti-
cal properties of K(:1,w).

The distribution of stress intensity factor K(:1,u)
for the functions f(x,w) are shown in Figures 1-30. These
figures show that as the value of N increases, the distribu-
tion of K(*l,w) 1s approximately normal with E[K(:1l,w)] being
the solution of the mean equation. It is observed that as
the value of N increases, the distribution of the stress
intensity factor K(*1l,w) is normal as long as the forcing

function f(x,w) 1is normal.

5. CONCLUSIONS

1. The foregoing analysis demonstrates a fairly simple yet
useful method for the solution of random Cauchy-type
singular integral equation that arises in a crack prob-
lem in the classical theory of elasticity. The solu-
tion of the random equation helps in the accurate

evaluation of the stress intensity factor at the crack
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tips under more realistic input or forcing functions.
2. The distributions of the stress intensity factors
K(zl,s) are approximately normal when the forcing func-

tions are normal.

S

3. The results of this study highlight the influence of the

h e

nature of the random input function on the stress

atw

intensity factor,.
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TABLE I »
p) -
£(x,s) € N(1,0.02°) N
Mean of variance of :ﬁ‘
Sample Size N K(l,w) K(1l,w) o
500 2 1.634664 0.001065 2
3 1.575876 0.000896 e,
5 1.563470 0.000866 oy
7 1.566512 0.000969 o
9 1.566098 0.000910 »
1000 2 1.635569 0.001079 R
3 1.575410 0.000960 2!
5 1.563799 0.000931 ~
7 1.567005 0.001003 0
9 1.565704 0.000940 gﬂ
2000 2 1.636609 0.001098 T
3 1.575890 0.000962 o
5 1.564721 0.000965 .
7 1.566515 0.000993 b’
9 1.564965 0.000987 ;
VA
3000 2 1.637003 0.001088 S
3 1.575030 0.000962 N
5 1.564731 0.000977 e
7 1.566254 0.000990 RS
9 1.564981 0.000974 >
"3
4000 2 1.636695 0.001094 e
3 1.575152 0.000984 £
5 1.565015 0.000977 boe A
7 1.566710 0.000985 o
9 1.564917 0.000983 » ]
5000 2 1.636726 0.001089 o
3 1.575127 0.000969 i~
5 1.564924 0.000989 o
7 1.566634 0.000969 N
9 1.564916 0.000983 ’—;
-~
o
.'\:"
N

=Y
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N
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.
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TABLE II

N(e®,0.02

Mean of Variance of
Sample Size N K'l,w) K{(l,w)

500 2 2.567233 0.000985
3 2.548983 0.000967

5 2.538348 0.000880

7 2.539721 0.000997

9 2.539926 0.001007

1000 2 2.566281 0.001026
3 2.548836 0.001010

5 2.537966 0.000897

7 2.540643 0.000933

9 2.539931 0.000971

2000 2 2.566361 0.001063
3 2.548886 0.001033

5 2.538958 0.000955

7 2.540021 0.000937

9 2.539534 0.000992

3000 2 2.566199 0.001082
3 2.549063 0.001023

5 2.539601 0.000987

7 2.539973 0.000944

9 2.539349 0.000992

4000 2 2.565732 0.001077
3 2.548748 0.001026

5 2.539587 0.000976

7 2.53979%6 0.000949

9 2.539454 0.001007

5000 2 2.565745 0.001069
3 2.548838 0.001015

5 2.539710 0.000975

7 2.539714 0.000955

9 2.539338 0.001008
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TABLE III

E(x,w) ¢ N(eX,0.02

2 2x
e

)

Mean of Variance of
Sample Size N K(l,w) K(l,w)
500 2 2.565219 0.002773
3 2.544691 0.002617
5 2.539554 0.002960
7 2.541145 0.002661
7 2.542362 0.002784
1000 2 2.565728 0.002727
3 2.546564 0.002680
5 2.541254 0.002728
7 2.541461 0.002704
9 2.542656 0.002535
2000 2 2.565767 0.002784
3 2.548370 0.002618
5 2.539482 0.002647
7 2.540158 0.002643
9 2.540600 0.002528
3000 2 2.565145 0.002694
3 2.547493 0.002589
5 2.539537 0.002630
7 2.539658 0.002603
9 2.541302 0.002609
4000 2 2.565149 0.002677
3 2.547726 0.002611
5 2.539973 0.002641
7 2.538959 0.002602
9 2.540734 0.002614
5000 2 2.564995 0.002644
3 2.547745 0.002592
5 2.539966 0.002628
7 2.539020 0.002585
9 2.540420 0.002630
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TABLE IV

£(x,w) < N(e %,0.02%)

Mean of Variance of
Sample Size N K{(-1,w) K(~1,w)}

500 2 1.562386 0.000996
3 1.478523 0.001107

5 1.465161 0.000979

7 1.466776 0.001004

9 1.469071 0.000901

1000 2 1.563262 0.001020
3 1.479762 0.001065

5 1.465880 0.001015

7 1.466557 0.000990

9 1.468161 0.000939

2000 2 1.563492 0.001015
3 1.479095 0.000998

5 1.466543 0.001003

7 1.466125 0.000990

9 1.468237 0.000972

3000 2 1.562768 0.001029
3 1.478868 0.000993

5 1.467130 0.000992

7 1.466727 0.000992

9 1.468084 0.000990

4000 2 1.562527 0.001035
3 1.478661 0.000985

5 1.467698 0.000993

7 1.466606 0.000992

9 1.467634 0.000986

5000 2 1.562371 0.001046
3 1.478330 0.000980

5 1.467851 0.000987

7 1.466590 0.000985
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ABSTRACT

In this paper, we present a method for the numerical solution of random
Love's integral equation. The technique involves a Chebyshev series approxima-
tion, the coefficients of which are the solutions of a system of random linear
equations. The statistical properties of the random solution are evaluated

numerically and used to determine the distribution of the random coefficients.
We express these distributions in histograms.
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Abstracts: Contributed Papers and Poster Presentations

algebras AL' L a line of . The combinatorial

properties of the (0,1) - matrices (xx} which

span these algebras are transferred to a
polynomial ring R = k[xl,....xV]/I, I a certain

homogeneous ideal. R is noetherian of Krull
dimension n+l in which certain statements about
the prime ideals of R are equivalent to
statements about the collineations of -. The
Krull intersection theorem provides an interesting
topology for R when =1 admits no collineation.

John L. Hayden

Bowling Green State University
Deparwment of Mathematics
Bowling Green, OH 43403

38 {C/P Session 1; Wed. 12:00NOON)

~ Family of Algorithms for the Graph Bisection
Problem

The Graph Bisection Problem, GBP, is the problem
of partitioning the vertex set of a given graph
into two subsets of the same size (within one
element) so that the number of edges cut is
2inimized.

we preseat a family of algorithms for GBP that
implements the idea of a restricted branch and
Sound method.

Iz is shown that for every constant A>0, there is
an algorithm with runniag time of 0(c®) (c<2),
wvhich performs as an «xact algorithm on the set of
graphs with n vertices and Sin edges.

wWe present the results of computer simulations
with the algorithms and discuss gseveral conjec-
tures which are based on these results.

Mark K. Goldberg

Jepartment of Computer Science
Rensselaer Polytechnic Institute
New York 12180-3590

Tov,

£39 (C/? Session 8; Thu. 12:00NOON)

APPROXIMATICN TO AUTOREGRESIVE MODEL WITH
STCCHASTIC CCEFFICIENTS

with stochas-
modelled by
stochastic

An autoregressive (AR) model
t1c cofficients is generally
deterministic AR model where
coefficients are reglaced by the mean of
the stochastic coefficients, It has been
sroved that this approximation is restric-
tive and not applicable in general. In
this article we suggest suitable improved
approximations which are less restrictive
and more 'closer' to the exact value. Some
applications of power spectral estimation
algorithm with stochastic coefficients are

also discussed. We illustrate aur analy-
tical techniques through computer algori-
thms and numerical results, These results
will highlight the error involved 1f one
uses deterministic AR models insted of
stochastic AR models.

M. SAMBANDHAM

Department of Mathematics

Morehouse College/ Atlanta University
Atlanta GCA 30314

K.B. BOTA

Department of Physics
Atlanta University
Atlanta GA 30314

#90 (C/P Session 13; Fri. 5:00PM)
Discriminative Optimization

The extentions to the simplex algorithm
required by Goal Programming (GP) in-
spire a further generalization on a
broader class of mixed binary problems
with a structure among goal functions.

The Discriminative Optimization (DO)
is defined 1in it's generality and the
score of optimization methods like; Set-
up cost, Goal Tree Programming, Aggrega-
tive Goal Programming, Linear Goal Prog-
ramming, etc. are shown to be particular

cases of the same scheme. Correspondig-
ly, simplex-based solution algorithms
for those problems, and even for the
Linear Programming, can be obtained as
implementations of the generat solution
process.

Dr. Pawel Radzikowski

Seton Hall University

School of Business

South Orange, NJ 07079

€91 (C/P Session 15; Fri. 5:00PM)

A Model for Cannibal:ism

Many species of 1insects and fish practice
cannibalism, presumably due to selective
pressure toward this tehavior. This paper
presents a system of non-linear ODE's which
reflects population dynamics 1n  an insect

species whose members pass through a sequence
of stages, and in which later stages
cannibalize earlier stages. Solution
trajectories must converge when the number
of stages 1s four or less. We conjecrure
that convergence always ~bZains but, wnen
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THE USE OF LAGRANGE MULTIPLIERS AND KUHN-TUCKER'S
THEORY IN OPTIMIZATION PROBLEMS

/

L@y

e
l‘ ‘

Advisor: Professor Negash Medhin

[ ’5{5

Thesis dated November, 1986

=
2% S

D

Lagrange multipliers, penalty methods, and Kuhn-

»

GNSe

Tucker's theory are some important mathematical tools used

in optimization problems. These tools are discussed so

: z
- @A

.~
> L

that one can appreciate the current areas of optimization

research. Moreover, since extensive research work exists

W

aHah N
\’.l'

for linear optimization problems, only nonlinear

Ny

I

applications are discussed.
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NUMERICAL SOLUTICN OF LINEAR INTEGRAL EQUATIONS
WITH RANDOM FORCING TERMS

LTI
""‘-,'-'s
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Advisor: M. Sambandham

o) AN
. N Fd

Thesis dated July, 1987

i

In Chapter one of this report we define Fredholm integral gj
equations of the second kind, Volterra integral equations of 5:
the second kind and differentiate between the two of them g;
and explain why integral equations are important. In Chapter 5\
two we discuss numerical procedures to integral equations. g;
N

The eguations we used 1in this report are of two types: (1) f:
Fredholm eguations and (2) Volterra equations. The methods i?.
R

("
'y

we used for Fredholm equations are: (i) Simpson's rule, (1ii)

o

Trapezoidal rule, (iii) Weddle's rule, (iv) the Collocation

method, and (iv) the Galerkin method. o
4
For Volterra equations we used the successive approxima- ::
tion method with (i) Simpson's rule, (il) Trapezoidal rule ii
n\ -
and (iii) Weddle's rule to evaluate the integrals. -
®
In both Fredholm and Volterra integral equations we have o
the forcing term to be random. Our simulation results are Sj
N
?:

presented in tables and graphs.
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